
CLIC: a Component Model Symbiotic with Smalltalk∗

Noury Bouraqadi
Université Lille Nord de France

Ecole des Mines de Douai
France

bouraqadi@ensm-douai.fr

Luc Fabresse
Université Lille Nord de France

Ecole des Mines de Douai
France

fabresse@ensm-douai.fr

ABSTRACT
Evolving object-oriented code such as replacing a part of
a system, is not always as easy as it should be. This is
because object-oriented languages do not enforce code mod-
ularisation. Component-oriented approches target this issue
by expliciting software architecture in terms of components
and connections between them. However, there is little lan-
guage support for component-oriented programming. Exist-
ing attempts are not really well integrated with the host-
ing object-oriented language. In this paper, we present the
CLIC component model, its integration and its support in
the Smalltalk language.

Categories and Subject Descriptors
D.2.3 [SOFTWARE ENGINEERING]: Coding Tools
and Techniques—Object-oriented programming ; D.2.11
[SOFTWARE ENGINEERING]: Software Archi-
tectures—Languages (e.g., description, interconnec-
tion, definition); D.3.2 [PROGRAMMING LAN-
GUAGES]: Language Classifications—Smalltalk ; D.3.3
[PROGRAMMING LANGUAGES]: Language Con-
structs and Features—Classes and objects

General Terms
Programming Languages

Keywords
Component Model, Component-Oriented Language

1. INTRODUCTION
Component approches are a promising track to build well

modularized and easily evolvable software out of reusable
components and connections. Programming component-
based applications is currently carried out using object-
oriented languages which do not offer specific abstractions

∗http://vst.ensm-douai.fr/Clic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWST’09 August 31, 2009, Brest, France.
Copyright 2009 ACM 978-1-60558-899-5 ...$10.00.

to ease component-oriented programming (COP) and have
to be used in a disciplined way to guarantee a COP style. By
disciplined way, we mean that design patterns and/or syn-
tactic conventions have to be used scrupulously in the code
if we want to benefit the component-oriented advantages. A
component-oriented language (COL) eliminates these bur-
dens because it offers high-level component-oriented abstrac-
tions and mechanisms that can be directly used by program-
mers. Even in a model tranformation process where the code
is generally partially generated, using a COL is desirable
because the code generation will be easier and the resulting
code will be more readable and easier to be completed by a
programmer.

However, there are few COL. Existing ones are generally
not well integrated with the hosting (often object-oriented)
language. For instance, the different component models
builts on top of Smalltlalk are not well integrated with the
Smalltalk language and they provide only limited COP sup-
port. In this paper, we propose to to address this limita-
tions. We present CLIC, a component-oriented language
specifically designed to be symbiotic with the Smalltalk lan-
guage.

In the following, we first set up the vocabulary that will
be used throughout the paper and provide a set of defini-
tions related to the concept of component in section 2. Next,
section 3 is dedicated to the state of the art. We provide an
overview of existing component models implemented on top
of Smalltalk, and discuss their limitations. Then, we intro-
duce the CLIC component model in section 4. We present
the design decisions behind CLIC and provide insight about
their implementation. Section 5, concludes the paper and
draws some future works.

2. COMPONENTS RELATED CONCEPTS
AND DEFINITIONS

Component approches have brought many new or adapted
abstractions and mechanisms such as component, module,
connection, composition, binding, port, interface, connector,
service, message but their interpretation vary quite widely
from one proposal to another. In this section, we define the
concepts that we will use in this paper.

2.1 Component’s Structure
A component [7] is a software entity that can be deployed

independantly and dynamically assembled with other com-
ponents. A component is created by instantiating a com-
ponent descriptor which describes its structure (ports and
attributes) and behavior (operations).

A component has ports. All interactions with a compo-
nent have to pass through one of its ports. Unidirectionnal
models distinguish two kind of ports: provided ports and
required ports. A component provides operations (same as
OOP methods) through a provided port and uses operations
of other components through its required ports. Bidirection-
nal models do not make this distinction and operations can
be provided or required through the same port. A port has
some contracts attached to. There are different kinds of
contracts such as syntactic contracts which describe the sig-
natures of the operations provided or required through the
port. More complex contracts can be attached to a port
such as protocols (a description of the valid operation call
sequences) or quality of service requirements.

Attributes are configurable variables local to a component.
An attribute is materialized by a couple of accessing oper-
ations (getter and setter) provided through one port of the
component. In order to configure components for purpose
of reuse in different application contexts, the default values
of attributes should be easy to change. These default values
will be used at instantiation-time to automatically configure
newly created components.

2.2 Connection, Composite and Architecture
The architecture of a software system defines the structure

of the system in terms of components and of connections
among those components [6]. Components manage business
functions while connections are dedicated to components co-
ordination and interaction. One of the most basic connec-
tion mechanisms is the direct binding of required ports to
provided ports. Complex connection support is provided
when connections are reified as connectors [5]. A connector
also links components together but it may hide wider com-
plexity such as communication between remote components
or constraints checking (integrity, coordination, security, ro-
bustness, . . .). A taxonomy of sotware connectors has been
identified [4] and predefined software connectors ease com-
ponents assembly.

The architecture of large scale software must be viewed at
different levels of details in order to present a macroscopic or
a microscopic view of the software. Hierarchical component
models enable viewing an architecture at different levels of
details because they support composites. A composite is
a component that abstracts an architecture i.e encapsultes
some components – called subcomponents – and their con-
nections. Subcomponents may be connected to each others
and their ports may be exported and made available as com-
posite ports. A subcomponent may be itself a composite.
Then, reusing a composite is just like reusing an assembly.

2.3 Summary
Figure 1 summarizes the main component related con-

cepts presented in this section.

3. EXISTING COMPONENT MODELS
FOR SMALLTALK

We give in this section an overview of existing component
models implemented on top of Smalltalk, and discuss their
limitations.

3.1 SCL
Scl [3] (Simple Component Language) is a component-

oriented language designed to support and ease component-

compositerequired port

interfaces

subcomponent /
component

port bindingprovided port

operationB
operationC(T)

operationA

Figure 1: Overview of the components related con-
cepts

oriented programming (COP). Scl is dedicated to COP be-
cause it enforces:

• decoupling means that a component never contains a
reference to another component,

• unanticipation means that the concrete components
that will be actually connected on to one component
are unknown by its programmer.

In Scl, a component is a runtime entity created by the in-
stantiation of a descriptor. A component has ports. A port
is decribed by one interface that declares a set of operation
signatures. A component provides its operations through its
provided ports and invokes the operations of other compo-
nents through its required ports. One of the key feature of
Scl is that operation invocation must be sent through a re-
quired port. This implies that the programmer doesn’t know
which operation of which component will be executed at run-
time. It depends on the port bindings of the required port.
More sophisticated bindings can be defined using connectors
and glue code. A connector is a component that receives op-
eration invocations through its provided ports and transmits
them throught its required ports by executing the glue code.
The glue code is modularized in a special operation attached
to a provided port. This operation is executed each time a
operation invocation arrived through the attached provided
port. Thanks to syntactic sugar, glue code can be written as
a lexical closure which does not burden programmers with
the writing of descriptors for simple connectors. The ex-
tensible and uniform component connection mechanism in
Scl is based on ports, bindings, glue code and connectors.
This mechanism addresses the key issue of the unanticipated
connection of independently developed components.

Scl also integrates unparalleled features. Basic types
(numbers, characters, ...) are presented to developpers as
regular components equipped with one provided port. This
uniformity allows basic types to be treated using the same
mechanisms as those for regular components. In Scl, argu-
ments passing is achieved using automatic connection and
disconnection of effective arguments (components) with the
receiver component. This innovative mechanism prevents
references escape and therefore communications outside of
connections defined in the archietcture description. Au-
toreferences (a component invokes one of its provided op-
erations) are achieved in Scl using regular operation in-
vocations through the self port. All components have an

internal required port named self dedicated to autorefer-
ences. This special port unifies autoreferences and other
operation invocations. In the area of separation of concerns,
Scl enables the use of a component as a “regular” compo-
nent or a “crosscutting” component (as in aspect-oriented
programming) thanks to a black-box joint point model and
additionnal binding primitives.

Scl is a language currently prototyped on top of
Smalltalk. In the current prototype implementation,
all Scl concepts have been reified. Error handling
(doesNotUnderstand:) coupled with message sending reifi-
cation [2] are used to implement the Scl mechanisms. Al-
though Scl has currently a Smalltalk compliant syntax, it
is not a Smalltalk exetension. A Scl programmer should
not use Smalltalk’s mechanisms such as inheritance (Scl
advocates reuse by connection only), message sending (Scl
relies on operation invocation and specific arguments pass-
ing), . . . All of this makes Scl clearly not symbiotic with
Smalltalk.

3.2 FracTalk
FracTalk 1 is a Smalltalk implementation of the Fractal

hierarchical component model [1]. We first start by present-
ing the Fractal model. Then, we provide a description of
the FracTalk implementation and how it is integrated with
Smalltalk.

Fractal specifies a component as a run-time entity that
can be handled through one of its provided ports (named
server interfaces in Fractal). A component can also have
an arbitrary number of required ports (named client inter-
faces) that support connections to ports provided by other
components.

A required port can be optional or not. A required port
op is optional if the component functioning is not altered if
op is not connected.

A required port can be singleton or collection. A required
port is singleton if it can not be connected to more that
one provided port. A required port is collection if it can be
connected to several provided ports. Actually, a collection
port is handled as a dictionary of required ports.

The ports can be either functional or non-functional.
Functional ports refer to application related functionality.
A component receives invocation of its provided operations
through its provided functional ports. It sends invocations
of operations provided by other components through its re-
quired functional ports. Provided functional ports allow
invoking operations implemented by the component. The
actual implementation of a component’s functional part is
called content. It refers both to the implementation of pro-
vided operations as well as to the component’s attributes.
This implementation can be plateform independent for prim-
itive objects. Conversely, the content of a composite com-
ponent is a set of components.

Non-functional ports (named controllers) allow managing
the component and support reflection. The Fractal design-
ers state that the set of non-functional ports is open, that
is, designers can add new non-functional ports. Several
non-functional ports were described in the Fractal specifi-
cation. They provide a variety of operations such as setting
up the component attributes, connecting the component re-
quired ports, managing the component life-cycle (e.g. start,

1http://vst.ensm-douai.fr/FracTalk

stop), and introspecting the component (e.g. retrieving all
its ports)

The full set of ports (provided and required, functional
and non-functional) of every Fractal component is part of the
component’s membrane which implements non-functional
features such as the component life-cycle or connection han-
dling. The membrane is the outer most part of the compo-
nent and encapsulates the content. Indeed, it intercepts all
incoming operation calls that have to be processed by the
content. It also intercepts all outgoing operation calls sent
by the content.

Regarding component descriptions, the Fractal specifica-
tion mainly focuses on the membrane description. Devel-
opers have to clearly declare all ports that are provided or
required by a component. The actual implementation is
leaved to the platform implementors which must rely on the
Factory design pattern.

In FracTalk, the content of a primitive component is im-
plemented as a plain object. Also, every port is implemented
as a single object in order to ensure that every port allow
invoking only declared operations. Therefore, a single com-
ponent materializes as multiple objets. Besides, the descrip-
tion of a component is scattered over multiple classes.

Another limitation of FracTalk is the the difficulty to
make use of Smalltalk libraries. Smalltalk objects aren’t
full fledged components since they do not have a membrane
and then does not provide expected non-functional ports.
Therefore, the only mean to use a Smalltalk object in a
FracTalk application is to encapsulate it in the content of
some component.

4. CLIC
We present here design choices made in CLIC2 and ex-

plain the rational behind. To design CLIC, we started from
Smalltalk and extended it with component features. Our
goal was to get a simple model that is tightly coupled to
Smalltalk, while compliant with the concept of component
as defined by Szyperski [7]. The symbiosis with Smalltalk al-
lows us to avoid many performance losses, and benefit from
Smalltalk dynamicity.

4.1 CLIC Components
A CLIC component is a run-time entity with explicit de-

pendencies, characterized by:

• 1 provided port. The unique provided port is the only
mean to interact with a CLIC component. This port
gives access to provided operations which are messages
understood by the component.

• 0 or more required ports. Required ports hold refer-
ences to other components. A required port can be
simple, and support connections to only one compo-
nent each time. Conversely, a required port can be
complex, and bear connections to a collection of com-
ponents. A component can function correctly if all its
required simple ports are connected to other compo-
nents.

• 0 or more attributes. A component can be a composite,
that is it can encapsulate some subcomponents. Sub-

2“Clic” in french is an onomatopoeia that mimics the sharp
sound of two objects coming quickly into contact, like build-
ing parts that get connected.

components are referenced as attributes. They can be
either private to a single component or shared among
two or more components. For every attribute, the com-
ponent support accessing operations named after the
attribute. Also, for each attribute, the component ex-
hibits a complex required port that fires events when
the attributes values change.

• 1 architecture. The set of connections among at-
tributes are made explicit as an architecture. This
architecture is used on component creation to actu-
ally set up connections. When a subcomponent is re-
placed, the architecture allows to identify connections
to destroy in order to free the obsolete subcomponent,
and connections to build in order to connect the new
subcomponent.

4.1.1 Provided Port

In constrast to components in other models, each CLIC
component provides a single port. This port is the only mean
to interact with a CLIC component, since it gives access to
all operations provided by the component. Indeed, we be-
lieve that this approach favors more reuse. In component
models supporting multiple provided ports per component,
it is not always easy to split component functionality over
multiple ports. Indeed, designers of any C1 component don’t
know beforehand which operations will be specified by each
required port of client components. For example, design-
ers of C1 may decide to make two operations op1 and op2
available through two different provided ports proP1C1 and
proP2C1. But, a client component C2 may call the two op-
erations op1 and op2 through a single required port reqPC2.
Therefore, there is a structural mismatch that forbids con-
nections between C1 and C2, even though C1 and C2 match
semantically.

We believe that splitting provided operations over differ-
ent provided ports should be avoided. Still the information
about relationships between provided operations is an inter-
esting information to have for a component client. There-
fore, while we enforce a single port in CLIC, we rely on
method categories borrowed from Smalltalk to provide a first
level of information about roles operation and relationships
between operations.

4.1.2 Required ports

A CLIC component can have a set of required ports in
order to get connected and then interact with other com-
ponents. A required port in CLIC can be of kind singleton
or collection. The novelty of CLIC is that component de-
velopers are offered a variety of collection required ports
borrowed from the Smalltalk collection hierarchy (Set, Ar-
ray, Dictionary. . .). When implementing a component de-
scription, developers choose which one to use. This choice
is made on development time, because the interaction with
components connected through collection ports is handled
the way Smalltalk deals with collections. So, developers need
to know which kind of collection they are dealing with to use
the right protocols (e.g. keysAndValuesDo: for dictionaries,
indexOf: for arrays and ordered collections).

4.1.3 Attributes

Existing component models such as Fractal do make a
distinction between attributes and subcomponents. This is
because often attributes are primitive types and thus treated

differently. Nevertheless, in CLIC we have a unified environ-
ment where every entity is a component, since all Smalltalk
objects are components. Therefore, we merged the concepts
of attributes and subcomponents3. Indeed, we believe that
the distinction between the two concepts only increases the
complexity of the component models without bringing any
significant added value.

However, we made explicit the concept of shared at-
tributes that is either forbidden or implicit in other models
such as Fractal. A shared attribute is typically a global com-
ponent (i.e. referenced in the system dictionary) and that
is used in the implementation of different components. We
belive that this concept is as useful as class variables.

Last, in order to favor reuse and unanticipated evolution,
we decided to include a built-in support for the Observer
design pattern. Therefore, the component has a required
port of kind collection for every attribute. When an at-
tribute changes, an event is fired through the corresponding
required port. The event object provide information about
the changed component, the changed attribute, and the new
and the old attribute values.

4.2 CLIC Classes
In CLIC, component descriptors are classes. Every CLIC

component is an instance of a class. The class defines the
component characteristics exposed in section 4.1. Particu-
larly, it hold methods that implement operations that can
be called through the component’s unique provided port.
In order to ease reuse and evolution, CLIC ensures that all
dependencies are explicit. All required globals (e.g. other
classes) referenced in the class definition and methods can
be automatically retrieved by sending the dependencies mes-
sage to the class.

A CLIC class definition (see figure 2) also declares private
and shared attributes. This declaration results into two ex-
tra provided operations for accessing each attribute: one for
reading and the other for writing the attribute. In the pro-
vided example, every counter will respond to messages count
and count: although the developers did not implemented
these methods.

The class definition also includes initialization directions
for declared or inherited attributes. That is a reference to a
literal or a global object (stored in the Smalltalk system dic-
tionary). In the provided counter class definition, the initial
value of the count attribute is the literal 0. It is possible to
a express a unary message which receiver is a global. The
message will be valued on instantiation time and answer will
be the initial value of the referenced attribute. For exam-
ple, the directive #myAttribute -> Time @ now will initial-
ize the attribute myAttribute with the result of the message
now sent to the Time class.

The definition of a class includes the declaration of re-
quired ports. Names of each required port and its kind are
provided. The port kind can be either a CLSingletonPort, or
any collection class (Array, Dictionary, Set. . .). For exam-
ple, a class definition may include the following declaration
of required ports:

requiredInterfacesDict: {

#myRequiredPort -> CLSingletonPort.

#myOtherRequiredPort -> Set}

It states that instances of this class are component that
3We do use the two words interchangeably in the following.

(CLComponent subclass: #CLCounter

localPrivateAttributeNames: #(count)

privateAttributesInitDict: {

#count -> 0}

sharedAttributeNames: #()

sharedAttributesInitDict: {}

localRequiredPortsDict: {}

category: #’ClicExamples-Clock’)

architectureFrom: {};

exportedPrivateAttributesDictFrom: {};

operationsExportDictFrom: {};

operationsDefaultReceivers: #();

exportedRequiredPortsDictFrom: {}

Figure 2: Definition of a counter component class in
CLIC

have two required ports. The first port, named myRequired-
Port is a singleton, and as such it can reference only a single
component. The second port, named myOtherRequiredPort
is of kind Set and thus, it can reference multiple non-equal
components.

The second part of the class definition is provided as a
cascade of messages sent to the component class. First, it
states the component architecture, that is how attributes
are connected. The directive below states that the port re-
quiredPort of the sub-component referenced as someAttribute
will be connected to the component referenced by attribute
otherAttribute.
(#attrib1 @ #port) => #attrib2.

When a subcomponent holds a collection port that needs
to be connected to more than one other subcomponent, the
last part of the directive is replaced by an array, as expressed
below:
(#attrib1 @ #port) => #(attrib2 attrib3).

Besides the architecture, the second part of the definition
expresses exports. This a facility avoids writing glue code to
make features of subcomponents available from the outside.
Thus, some operations actually implemented in a subcom-
ponent can made available, so the component can display
them on its provided port. When called, the operation is
executed by the subcomponent.

Listing explicitly provided operations to export can be te-
dious, we introduced the operationsDefaultReceivers facility
to export all provided operations. It is simply an ordered
list of attributes. When a component receives a message
that refers neither to operations it implements, nor to ex-
ported operations, the operation is looked up in the defaults
receivers list. The first subcomponent that implements the
operation will process message.

A class definition can also include required ports exports.
Such exports are useful when designers decide to keep some
subcomponents required ports unconnected. This is done
often for sake of genericity. Exporting a subcomponent re-
quired ports means that it is the responsibility of the com-
ponent assembler to decide wich component to use for per-
forming the needed functionalities.

Export is also possible for sub-component attributes.
When an attribute is exported, its accessors become avail-
able operations. Also, the attribute observers required port
becomes available. So, outer components can be connected

in order to react to the attribute changes.
CLIC inheritance model is analogous to Smalltalk: each

class has a single superclass. A CLIC class inherits every
part of the definition from its superclass. A subclass can
override attribute initialization directives and extend the
other features (attribute declarations, required ports, archi-
tecture. . .).

4.3 CLIC and Smalltalk Symbiosis
A major noticeable difference between CLIC and other

component models is that CLIC relies heavily on the
Smalltalk language feature and the Smalltalk virtual ma-
chine. First of all each component is implemented exactly
as a single object. Provided ports are but object references,
and required ports are instance variables. This design de-
cision contrast with other approaches where a component
materializes as a set of objects, including objects that act as
reifications of ports.

A nice consequence of this design decision, is that the
use of CLIC introduces no overhead on application mem-
ory footprints. Another interesting consequence is that ev-
ery Smalltalk object is also a component, so we get a fully
component-based programming environment and libraries.
Indeed, a Smalltalk object does exhibit a single provided
port exactly as CLIC components do. Still, we consider
plain Smalltalk objects as “dirty” components since they are
tightly coupled to each others and their architecture is hid-
den.

Regarding the class level, while CLIC is a full fledged com-
ponent model, the difference between CLIC classes and plain
Smalltalk classes is structural. Indeed, CLIC code is com-
piled using the Smalltalk compiler. We rely on Smalltalk re-
flective capabilities, namely metaclasses, to introduce CLIC
classes. But, the core behavior of CLIC classes is fully com-
pliant with Smalltalk classes, so the Smalltalk virtual ma-
chine treats CLIC classes as plain Smalltalk classes. CLIC
adheres to single inheritance, and operations are imple-
mented as methods stored in the method dictionary. There-
fore, CLIC introduces no overhead when processing oper-
ations. Operation calls are but messages sends that are
bounds to methods by the virtual machine by simply looking
them up into method dictionaries.

Last, provided ports of kind collection also reflect the sym-
biosis between CLIC and Smalltalk. Indeed, the declaration
of a collection port refers to one of the Smalltalk collec-
tion hierarchy classes. It means that connections through
a collection port are references hold by an instance of the
provided class. Thus, CLIC developers fully benefit form of
the rich Smalltalk collection hierarchy.

5. CONCLUSION AND FUTURE WORK
In this paper we presented the CLIC component model

and its Smalltalk-based implementation. CLIC was thought
from the beginning as an extension of Smalltalk to support
full-fledged components. We show indeed, that CLIC pro-
vides component features such as ports, attributes, or archi-
tecture.

From the implementation point of view, we fully relied on
Smalltalk reflective capabilities. Thus, from the Smalltalk
virtual machine point of view, CLIC components are but
objects and their descriptors are extended Smalltalk classes.
Because of this symbiosis between CLIC and Smalltalk, the
use of CLIC allows taking benefit from modularity and

reusability of components without sacrifying performance.
Applications in CLIC consume the same amount of mem-
ory and CPU as plain Smalltalk applications. Indeed, each
clic component is implemented as a single object. Operation
calls result into messages looked up by the virtual machine
in the classes method dictionary, making processing as fast
in CLIC as in Smalltalk.

A second important benefit for the symbiosis is that CLIC
components can directly interact with Smalltalk plain ob-
jects. Indeed, a Smalltalk object is viewed as a simple com-
ponent with a unique provided port and no required port.
Therefore, CLIC developers can benefit from the full power
of Smalltalk class libraries.

Regarding future work, we plan to explore at least two
areas of improvements. From the model point of view, we
plan to introduce a support for version management. From
the tooling point of view, an adapted version of the packag-
ing system is needed. The current implementation of CLIC
has been made in Pharo and uses the Monticello packag-
ing systems which is difficult to extend for modified class
definitions.

6. REFERENCES
[1] E. Bruneton, T. Coupaye, and J. Stefani. Recursive and

dynamic software composition with sharing. In
WCOP’02–Proceedings of the 7th ECOOP
International Workshop on Component-Oriented
Programming, Malaga, Spain, Jun 2002.

[2] S. Ducasse. Evaluating message passing control
techniques in smalltalk. Journal of Object-Oriented
Programming (JOOP, 12:39–44, 1999.

[3] L. Fabresse, C. Dony, and M. Huchard. Foundations of
a Simple and Unified Component-Oriented Language.
Journal of Computer Languages, Systems & Structures,
34/2-3(2-3):130–149, 2008.

[4] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 178–187, New York, NY,
USA, 2000. ACM Press.

[5] M. Shaw. Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deserve
First-Class Status. In ICSE ’93: Selected papers from
the Workshop on Studies of Software Design, pages
17–32, London, UK, 1996. Springer-Verlag.

[6] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. Software
Engineering, 21(4):314–335, 1995.

[7] C. Szyperski. Component software: beyond
object-oriented programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1998.

