
Virtual Smalltalk Images: Model and Applications

G. Polito
RMoD Project-Team, Inria

Lille–Nord Europe
Institut Mines-Telecom, Mines

Douai.
guillermo.polito@mines-douai.fr

S. Ducasse
RMoD Project-Team, Inria

Lille–Nord Europe
stephane.ducasse@inria.fr

L. Fabresse
Institut Mines-Telecom, Mines

Douai.
luc.fabresse@mines-douai.fr

N. Bouraqadi
Institut Mines-Telecom, Mines Douai.

noury.bouraqadi@mines-douai.fr

Abstract
Reflective architectures are a powerful solution for code
browsing, debugging or in-language process handling. How-
ever, these reflective architectures show some limitations in
edge cases of self-modification and self-monitoring. Mod-
ifying the modifier process or monitoring the monitor pro-
cess in a reflective system alters the system itself, leading to
the impossibility to perform some of those tasks properly. In
this paper we analyze the problems of reflective architectures
in the context of image based object-oriented languages and
solve them by providing a first-class representation of an im-
age: a virtualized image.

We present Oz, our virtual image solution. In Oz, a virtual
image is represented by an object space. Through an object
space, an image can manipulate the internal structure and
control the execution of other images. An Oz object space
allows to introspect and modify execution information such
as processes, contexts, existing classes and objects. We show
how Oz solves the edge cases of reflective architectures
by adding a third participant, and thus, removing the self-
modification and self-observation constraints.

1. Introduction
In a Smalltalk environment, an image is a memory dump
(snapshot) of all the objects of the system, and in particular
all of the classes and methods at the moment of the dump. An
image acts as a cache with preload packages and initialized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

objects. When the system is launched it takes an image as
input and executes it from the place where the program
counter was saved on previous save.

Smalltalk images are defined using a self-describing re-
flective architecture. Fully reflective architectures such as
the one of CLOS [BGW93, Rho08] or Smalltalk [GR89]
provide a simple and yet really powerful solution to de-
velop tools such as full IDEs, code browsers, refactoring
engines and debuggers [Riv96, Duc99]. Reification of the
stack in addition to all the structural language elements al-
lows one to even manipulate program control flow as ex-
emplified with modern web application frameworks such as
Seaside [DLR07, GKVDHF01]. Indeed, a reflective system
can be understood, changed and evolved using its own con-
cepts and features. In addition, reflection is based on the no-
tion of causal connection between the system and its meta-
level [Mae87].

However, reflective architectures present some limita-
tions. For example, kernel code such as array iteration
method Array»do: is used by both base and meta levels of the
system in a casually connected way. Because of this casual
connection, breaking such a method impacts on libraries or
tools that are essential in the system, causing the system to
crash [DSD08].

Reflective architectures also suffer from the observer ef-
fect when doing analysis on the system. That is for example,
observing its own running processes and their execution, or
its consumed memory alters the observed element. Iterating
the memory to count the amount of instances of a class, can
create more objects in the iteration process. The manipula-
tion of processes can be done only from an active process
and thus, there is no possibility to activate directly a process
from the language.

To avoid this effect, the execution of these reflective op-
erations is normally delegated to the virtual machine (VM).

The virtual machine executes code atomically for the im-
age’s point of view. However, modifying the virtual machine
to introduce new features is a tedious task, and there are not
much developers experts in the area.

In this paper we propose to leverage this problems by
creating an image meta-level. Our proposal is to move the
control of this reflective operations from the virtual machine
to another image. That is, an image will contain another
image, and be able to reason about and act upon it. We call
this image virtualization.

Contributions. The contribution of this paper is the in-
troduction of Smalltalk Virtual Images to ease image anal-
ysis and evolution that is usually challenging in a reflec-
tive system (cf. Section 2). We describe Oz, an object
space [CPDD09] based solution that we implemented on top
of Pharo providing Smalltalk image virtualization (cf. Sec-
tion 3). We also document the implementation details (cf.
Section 4) present both in the language library and the vir-
tual machine extensions we wrote. Then, we present some
exemplar applications of this concept (cf. Section 5) demon-
strating that it solves the initial challenges. Finally, we dis-
cuss the solution and related work (cf. Section 6) before con-
cluding.

2. Reflective Architectures: Recurring
Problems and State of the Art Solutions

Programming and evolving Pharo’s core, several limitations
and problems appear because of its reflective architecture. In
the following subsections we illustrate some of these recur-
ring problems, and describe their state of the art solutions.

2.1 Case 1: System self-brain surgery
Modifying Pharo’s core parts from the system itself is a crit-
ical task. Core parts of a reflective system are in use while
trying to modify them, generating an effect also known as
self-brain surgery [CPDD09]. Doing so wrongly can put the
system into an irrecoverable state since it may impact on el-
ements that the system uses at the same time for running and
applying the modifications. For example, that happens when
changing methods such as Object»at: or Array»at:, adding new
instance variables to core classes such as Process or Class, or
even modifying tools like the debugger or browser. Introduc-
ing a bug at these places may make the system unusable, for-
bid the possibility to rollback the change and force a restart
resulting in the lost of all the changes made.

Another issue while doing self-brain surgery on a system
is that large system modifications cannot be performed in
an atomic way. They should be split into several smaller
changes, each of which may be critical on its own. Moreover,
those changes also require to be applied in a specific order to
be safe. Respecting a safe order constrains the development
process, and therefore, restricts the developers working on
the core of the system.

A typical case of self-brain surgery in Pharo is the modifi-
cation of the debugger. The system automatically opens the
debugger when an error occurs. The user performs actions
with it like changing a method, evaluating an expression or
even skip the error and proceed. However, making a mistake
when rewriting a debugger’s method may cause an irrecover-
able infinite recursion. Indeed, an error launches the debug-
ger, the trial for launching the debugger fails because of its
bugged method, this debugger’s failure leads to try to launch
another debugger, and so on. Because of this infinite recur-
sion, the user never gets the control back and cannot solve
the original problem.

Bootstrapping a system[PDF+on] or recreating it from
scratch solves partially the problems of self-brain surgery.
These processes create new images in an atomic way, over-
coming many of the self-brain surgery limitations. However,
the development process in that case gets interrupted: the
surgery fixes should be introduced inside the specification
of the image, the new image containing the fix is built from
scratch, the current working image has to be discarded, and
the development should be continued in the new image. On-
going changes during former development, which reside in
the old image, should be either ported to the new image or
discarded.

Current Pharo distribution includes within its libraries an
emergency evaluator. Whenever an error occurs and the nor-
mal graphical user interface cannot be displayed because of
this error, the control fallbacks to this emergency evaluator.
This is a simple tool with almost no graphical dependencies
to evaluate expressions and revert the last method submis-
sion. However, it depends on the compiler, the event ma-
chinery, and the collection library, and thus, breaking any of
them makes the emergency evaluator unusable.

Many different problems may arise when doing self-brain
surgery and for each of them, many others ad-hoc solutions
or workarounds have been proposed. For example, instead
of modifying directly the debugger, a developer may make a
copy of it to work on. Then, the system debugger can be used
to debug and test the one in development. Once finished, the
new debugger can replace the original.

Requirement. A solution for self-brain surgery problems
should include the possibility to apply atomic changes in
the system, keep the development process as interactive as
possible and scope the impact of side-effects.

2.2 Case 2: Uncontrolled Computations
From time to time a Pharo image can become unresponsive.
This problem may be caused by a bug in the processes
priority configuration i.e., a never ending process with high
priority does never give chance to run to other processes, and
thus, the user cannot regain control to modify it because the
user interface process is blocked. Currently, the only existing
solution to regain control in such situations is the usage of
the interrupt key. The interrupt key is a key combination that

when pressed forces the running image to pause one of its
processes.

On the one hand, when the virtual machine detects this
situation, it signals a semaphore that should awake a handler
process inside the image to handle this situation. On the
other hand, the current implementation of the interrupt key
in Pharo uses the input event process to detect if the given
key is pressed. This process runs at a fixed priority of 60 (of
a total of 80).

The current state of the art of interrupting presents the
two following problems:

Interruption runs on the same level as other processes.
When the interruption succeeds, it activates a process
that is supposed to suspend the problematic process and
give back the control to the user. However, the activa-
tion of this interruption process suspends the problematic
process placing it in its corresponding suspended queue,
making it undistinguishable from other processes. Then,
the interrupting process must guess which was the pro-
cess that was interrupted.

Bad process configurations induce starvation. Since the
event handling process, which implements interruption,
runs at a priority of 60, processes with higher priority
may never be interrupted. Then, higher priority processes
can avoid interruption and make lower processes starve.
One solution to this problem is changing the configura-
tion of the interruption process to make it run in the high-
est priority. However, there may be cases in which the
process configuration needs a process with higher prior-
ity than the input event process.

Requirement. There is a need for a solution allowing the
non intrusive and non constrained control over processes
execution.

2.3 Case 3: Error handling during system initialization
The initialization of a Pharo image is implemented in the
language itself. At startup time the system iterates the
startup list and sends the startUp: message to each of the ob-
jects it holds. Each object in the startup list handle their own
startup. The startup runs before giving control to the user.

Language libraries can access and configure the startup
list, providing a flexible and easily extensible configuration
mechanism. However, the accessibility of this feature leads
to misuse and errors. Resources initialized on startup can
provoke irrecoverable errors if not well handled. For exam-
ple, resources using low level code may cause the current
operating system process crash and quit. Under this kind of
errors, the image quits on startup without providing the user
a way to recover the work he did in previous sessions.

The recovery of all the work done in a failing image is
a tedious task, without a conclusive solution. The changes
log file of the image can be used to restore the work, when
available. The changes log stores the operations performed

on the image, with all changes made to class and methods
definitions. Additionally, some ad-hoc solutions appeared
such as running the failing image with the virtual machine
in debug mode. When debugging the system through virtual
machine, the developer must deal with low level code work
at the bytecode level. In exchange, he can control completely
the execution: failing statements can be skipped, the image
can get finally initialized and the he can obtain control to fix
the bug and recover his work.

Requirement. The system recovery should be a high level
process, and easily accessible.

3. The Oz model for Virtual Images
A virtual Smalltalk image is an image living inside another
Smalltalk image. The container image, the host, observes the
virtual image and has complete control over it. The main
idea is that such tasks difficult to perform due to the reflec-
tive architecture are handled by the host image. We trans-
form the critical "self-brain surgery" tasks into safe "brain
surgery" ones, by delegating them to another Smalltalk im-
age.

Oz is a virtual image model and implementation based
on object spaces [CPDD09]. Casaccio et al. sketched object
spaces to solve self-brain surgery. When doing self-brain
surgery, the image under modification becomes a patient of
a surgeon image. The patient is included inside the surgeon
as an object space. Through this object space, the image gets
manipulated by the surgeon, fixed and finally awoken.

In Oz, an object space is a subsystem of another image. It
is an object graph composed by two main elements: (a) a full
Smalltalk image (cf. Section 3.1) and (b) a "membrane" of
objects controlling that image (cf. Section 3.2). The image
containing an object space is its host, while the object space
is its guest.

Figure 1 shows a host image with two tools (ToolA and
ToolB) interacting with an object space. The object space
is enclosed by the dotted line. It contains a guest image
and a membrane. The host tools interact with the membrane
objects, while the membrane objects manipulate the objects
inside the image.

In Oz we extended the object space model to apply self-
brain surgery (cf. Section 3.3) and control rigorously both
communication and execution (cf. Sections 3.4 and 3.5). In
this section we describe the concepts and design principles
guiding our solution for virtual Smalltalk images.

3.1 The Guest Image
The image guest inside an object space, as any other
Smalltalk image, contains its own classes and its own spe-
cial objects such as nil, true, false, processes and contexts. If
we save this image on a filesystem, we can execute it as any
other image. Indeed, it contains all objects that are necessary
to run on its own dedicated virtual machine. Additionally,
the guest image does not need to include any extra libraries

Host

ToolA

ToolB

Object Object SpaceSmalltalk ImageCaption:

Guest

Figure 1. A host image contains an object space, repre-
sented as the region enclosed by the dotted line; the object
space contains a guest Smalltalk image with its own object
graph; the membrane is the gray region between the guest
image and the dotted line; the tools inside the host interact
with the objects in the membrane to manipulate the image.

or code for the host to include it. However, an image must
fulfill a contract, as described in Section 3.6.

An object space’s image contains an object graph satis-
fying the transitive closure property. All objects inside the
image reference only objects inside the same image. There
are no references from the inside of the object space to its
host. This is a key property to allow an image to be deployed
both as an object space or as a standalone image on a dedi-
cated virtual machine in a transparent way.

The object space enforces the isolation of its enclosed
image in several ways. First, its membrane controls that no
objects of the host are injected into the guest image. Second,
it enforces that both guest and host images do not share
any execution context. Finally, Pharo has no ability to forge
object references [HCC+98] and therefore, the guest image
can only refer to objects that are given to it explicitly, and
not create arbitrary object references.

3.2 The Membrane
The membrane controls and enables the communication be-
tween the host and the guest objects. It encloses and encap-
sulates the guest image. This membrane is made up of ob-
jects which provide meta-operations to reason about and act
upon the guest image. The host’s objects cannot access the
guest image but through the membrane’s objects. The mem-
brane objects are part of the host image and provided as a
library in it.

The membrane contains objects to manipulate both the
guest image as a whole and its inner objects individu-
ally. To manipulate the image as a whole, it provides one
façade [GHJV95] object, the objectSpace. The objectSpace is
a first-class object reifying the object space. Figure 2 shows
the proposed API of an objectSpace object. To manipulate

the individual objects inside the guest image in a controlled
way, the objectSpace object provides mirrors, as described in
Section 3.3.

"accessing"
nilObject
falseObject
trueObject
specialObjectsArray

classNamed:
classes
compactClassAt:
compactClassAt:ifNone:
globalNamed:

"conversion"
fromLocalByteString:
fromLocalByteSymbol:
fromLocalCharacter:
fromLocalCompiledMethod:

toLocalByteString:
toLocalByteSymbol:
toLocalCharacter:
toLocalCompiledMethod:

"process manipulation"
createProcessWithPriority:doing:
installAsActiveProcess:

transferControl

ObjectSpace

Figure 2. The API of an object space

3.3 Mirrors for Object Manipulation
The manipulation of objects inside the object space image
cannot be achieved with a traditional message send mecha-
nism. In the normal case, when a message send is performed,
the virtual machine takes the selector symbol of the message
and lookups in the class hierarchy method dictionaries of
the receiver until it finds a method with the same (identical)
selector. In our scenario, both host and guest images con-
tain their own Symbol class and symbol table. Then, when
performing a cross image-message send the method lookup
mechanism takes a selector symbol from the host, lookups
into the guest receiver’s hierarchy, and finally fails because
the selector in the guest is (while maybe equals) not identi-
cal to the selector in the host. Also, forcing a cross image-
message send by using a guest’s selector can leak host refer-
ences to the guest: activating a guest method from the host
gives the guest complete access to the host through the this-
Context special variable which reifies the stack on-demand.

To encapsulate and control the basic object manipulation,
the object space façade object provides mirrors [BU04].
Mirrors hide the internal representation of the objects inside

the objectspace and expose reflective behavior. The guest is
not aware of the existence of these mirrors.

A basic object mirror provides the following operations:

Field Manipulation. Operations to get and set values in
both instance variables and variables fields of an object,
such as at: and at:put:, or instVarAt: and instVarAt:put:.

Size calculation. Operations to get the size of an object
expressed in the amount of instance variables and amount
of variable fields, such as fixedSize and variableSize.

Class access. Operations to introspect and modify the be-
havior of an object, such as getClass and setClass:.

Special Objects Tests and Conversions. Operations to test
if an object is a primitive1 object such as nil, true or false,
and to convert it to its equivalent in the host image, such
as isNilObject, isSmallInteger or asBoolean.

All objects inside an object space and reachable by ref-
erence can be retrieved by host’s objects through the object
space facade and mirrors. There is no limitation nor restric-
tion for object access. The host manipulates all objects in a
homogeneous way through their mirrors.

Additionally, specific mirrors are provided to manipu-
late objects with a specific format and/or behavior such as
Class, Metaclass, MethodDictionary, CompiledMethod, Method-
Context, and Process.

3.4 Controlled Execution
An objectspace’s execution is fully controllable from the
host. The host can introspect and modify an objectspace pro-
cesses via mirrors to obtain information such as the method
currently on execution, the values on the stack or the current
program counter. Besides from those reflective operations,
an objectspace provides also operations to suspend, resume
or terminate existing processes, and to install new ones.

The objectspace provides fine-grained control on the
guest execution. An objectspace controls the amount of CPU
used by the guest image. This way, a virtual image can be
customized for scenarios like for example testing, CPU us-
age analysis, or old hardware simulation. For example, it
may restrict its processes to run during only 300 millisec-
onds every second for either.

3.5 Controlled Communication
As explained in Section 3.1, an objectspace is an isolated
object graph in the sense that from the guest image there is
no way to reach host objects. However, the opposite relation
is possible: the host can manipulate completely the object
space.

The communication mechanism between host and guest
images is based on the injection of objects into the object
space. The host may install from simple literal objects such

1 we mean by primitive objects those that represent the simplest elements in
the language

as strings or numbers, up to more complex objects like
classes, methods. The object space permits to send messages
to objects inside itself by injecting a process executing the
desired code. The membrane objects can retrieve the result
from the process’ context once the execution is finished.

The object space membrane ensures that object injection
honors the transitive closure property. On one side, literal
objects from the host are automatically translated to their
representation in the object space. An object space imple-
ments the operations to transform literal objects (numbers,
strings, symbols, some arrays and byte arrays) from and to
its internal representation.

On the other side, non literal objects are actually not
created in the host and injected in the object space. Non
literal objects are directly created in the object space, so the
task of injecting the new object inside a graph is safe.

3.6 A Guest Image Contract
The creation and set up of an object space is done by putting
in place the guest image and setting up the correspond-
ing membrane. The guest image can be created either from
scratch or by loading an existing image file. One way to cre-
ate a guest image from scratch is for example by bootstrap-
ping it given a specification [PDF+on]. On the other side,
loading an existing image file consists in putting the object
graph from that image inside the object space.

Once the guest image is available, the host only sees it
as a big object graph, not being able of differentiate the ob-
jects inside it. Then, to be able to manipulate the internals
of the object space, the objectSpace and mirror objects must
be configured with information about the internal represen-
tation of the guest image objects. They need the following
kind of information in order to discover the rest of the guest
image:

Special instances. In order to write some tools, and do
comparisons and testing methods, the object space needs
to know how to reach special instances such as nil, true
and false.

System Dictionary. For the object space give access to
classes, traits and even global variables installed in its
inner image, a description on how to reach them must be
provided.

Processes. It is important, for execution manipulation (cf.
Section 3.4), that the image provides access to its pro-
cess machinery. The accessibility to processes in running,
suspended or even terminated state is vital, while it is
also desirable the access processes in failing state for pro-
cess monitors and debuggers. Direct access to the process
scheduler and the priority lists is also desirable.

Literal Classes Mappings. Communication between host
and guest require the translation of literal objects from
and to the internal representation of the guest image (cf.
Section 3.5). To achieve this, the object space needs to

know the classes and internal format of those objects
and thus, a mapping specifying the transformation must
be provided. For example, the object space should know
which are the classes inside the image that correspond
to the host ByteString and SmallInteger ones to transform
them if necessary.

Special classes internal representation. In order to ma-
nipulate some special objects in the objectspace, such as
classes, metaclasses, processes and contexts, the internal
representation should be given. Their internal representa-
tion includes both the amount of instance variables and
variable fields, their size in memory, and their meaning.
For instance, a class object format must include which
are the instance variables containing the class name and
the instance variables list.

4. Oz implementation in the Pharo Platform
We implemented Oz2 in the Pharo 2.0 platform. Our solution
virtualizes Pharo images and provides, as already described,
the ability to fully control their object graph, inject objects
in a safe way and control their execution.

Our implementation includes a language side library re-
sembling the membrane objects and an extension to the
Stack virtual machine. We decided to extended the Stack
virtual machine to avoid dealing with the Just In Time
(JIT) compiler. The virtual machine extensions, described
in Sections 4.4 and 4.5, include the addition of three prim-
itives (load an image into the object memory, transfer the
execution to an object space, and install an image in an ob-
ject space as host) and the modification of the function in
charge of the context switch mechanism.

In this section, we explain the details of our solution’s
implementation. We intend this section to document both
the features a programming platform (language and virtual
machine) should provide to build this kind of solution and
the way our solution uses those features.

4.1 Memory Layout
We decided to make an object space share the same memory
space (the object memory) used by the host. Then, objects
from both host and guest are mixed in the object memory,
and not necessarily contiguous, as shown in Figure 3. This
decision is funded on minimizing the changes made to the
virtual machine, because of its complex state of the art. Our
decision, while easing the development of our solution, has
the following impact on it:

Reuse memory handling mechanisms. We use the same
existing memory infrastructure as when no object spaces
are used. Existing mechanisms for allocating objects or
growing the object memory when a limit is reached can
be reused transparently by our implementation.

2 The code can be found under http://www.smalltalkhub.com/#!/~Guille/
ObjectSpace with licence MIT

Simplify the object reference mechanism. References
from the object space to the guest image are handled as
simple object references. No extra support from the vir-
tual machine was developed in this regard.

Shared garbage collection. Since objects from the host
and guest are mixed in the object memory, and their
boundaries are not clear from the memory point of view,
the garbage collector (GC) is shared between them. Every
GC run must iterate over all their objects, increasing its
time to run.

Observer’s effect on an object space’s memory. Analyz-
ing and controlling an object space’s memory still suffers
from the observer’s effect in our solution: every action
taken by the host on the object space modifies the shared
memory, and therefore alters the process.

4.2 Mirror Implementation
Our implementation of mirrors manipulate the objects inside
an object space by using already existing primitives. There
was no need to implement new primitives in the virtual
machine since the existence of two primitives:

Execute a given method on an object. Given a method,
it is possible to execute it on an object, avoiding
method lookup in the object. In the current virtual ma-
chine, this primitive is implemented in the method re-
ceiver:withArguments:executeMethod: of the Compiled-
Method class, with number 188. This method receives as
arguments the object on which the primitive will be exe-
cuted, an array of arguments, and the methods to execute.

Execute a primitive on an object. It is possible to send
a message to an object, so a primitive is executed on
the receiver. This primitive is implemented in Pharo’s
ProtoObject class as tryPrimitive:withArgs: with number
118 and receives as argument the number of the primitive
and an array or arguments.

Since the primitive tryPrimitive:withArgs: executes the
given primitive on the receiver of the message, and
we want minimal intrusion in the usage of our mir-
rors avoiding method lookup on the guest, we com-
bine both primitives (cf. Figure 4). This way, we use
primitive receiver:withArguments:executeMethod: to avoid the
method lookup and provide a receiver to primitive tryPrimi-
tive:withArgs:.

CompiledMethod
receiver: anObject
withArguments: { aPrimitiveNumber . anArrayOfArguments }
executeMethod: (ProtoObject >> #tryPrimitive:withArgs:)

Figure 4. Combining the two meta primitives to execute a
primitive on a guest object

Our mirror system contains three main mirrors regarding
the internal representation of objects: a mirror for objects

http://www.smalltalkhub.com/#!/~Guille/ObjectSpace
http://www.smalltalkhub.com/#!/~Guille/ObjectSpace

nil
host

false
host

true
host

nil
guest

false
guest

true
guest

'hi!'
host

...

The Object Memory

Figure 3. Objects from the host and guest are mixed in the object memory. In this figure, after the nil, true and false host
instances, follow the corresponding ones of the guest, which can in order be followed by objects of the host, like the string ‘hi’.

containing just object references such as Array or OrderedCol-
lection, a mirror for objects with non-reference word fields
such as Float or WordArray and a last one for objects with byte
fields such as ByteArray or ByteString. In addition to them, we
provide specialized mirrors for some kind of objects. The
list of current mirrors we provide is the following: Object-
Mirror, ByteObjectMirror, WordObjectMirror, ClassMirror,
MetaclassMirror, ClassPoolMirror, MethodDictionaryMir-
ror, MethodMirror, ContextMirror, ProcessSchedulerMirror
and ProcessMirror.

4.3 Process Manipulation and Scheduling
Processes inside an object space are exposed to the host im-
age as mirrors. Resuming/activating a process consists in re-
moving it from the suspended list in its scheduler and put it
as the active process. Suspend a process consists in putting
the process in the corresponding suspension list of its pro-
cess scheduler. The ProcessMirror and the ProcessSched-
ulerMirror handle the scheduling and keep the consistency
in the object space process scheduler.

Using Oz, we can also create and install new processes
inside an object space given a code expression. The creation
of a process requires the creation of a compiled method with
the code (bytecode) corresponding to the desired expression
and a method context. The compiled method with the code to
run is obtained by compiling the expression in the host and
creating an object space compiled method with the compiled
bytecode and the corresponding literals.

4.4 Context Switch between Images
Pharo virtual machine holds the state of the image running
into the special objects array object. The special objects ar-
ray is a simple array object referencing special objects di-
rectly accessed and used by the virtual machine. For ex-
ample, it references objects such as the boolean and nu-
meric classes or the nil, true and false instances. Particularly,
the special objects array contains a process scheduler object
and its corresponding process objects, implementing green
threads. Pharo virtual machine has a single threaded nature
and uses green threads to organize its execution.

An object space has its own special objects array, and
thus, the code execution inside the object space must use
its special objects and not the ones in the host. We modified
the virtual machine to be able to perform a context switch
between the host and the object space, and making it sensi-

tive to the corresponding special objects array. We kept the
single threaded nature of the vm, so the context switch be-
tween images puts the running image to sleep and awakens
the new one. There are no concurrency problems between
the different images.

Our modified VM has a special reference to the host’s
special objects array. To let an object space run, we imple-
mented a primitive to explicitly give control to the object
space by installing its special objects array. This primitive
puts the current running process to sleep, changes the spe-
cial objects array to the one request, and finally awakens the
process installed as active in the object space. Figure 5 con-
tains the VM code implementing this primitive.

Our implementation also supports the possibility to pro-
vide a controlled window of execution to an object space.
The current VM possesses a heartbeat thread it uses to pro-
voke a context switch every 20 milliseconds. Our imple-
mentation uses the heartbeat mechanism to pause the cur-
rent object space process and give the control back to the
host. We changed the VM function checkForEventsMayCon-
textSwith: adding the code in Figure 6, to use the behavior
implemented in the primitiveResumeFromASpecialObjectsAr-
ray: primitive.

4.5 Creating an object space
An object space can be created either from scratch or by
loading an existing image. Loading an existing image was
implemented as a virtual machine primitive, because the
image snapshot is actually a memory snapshot and therefore,
easier to handle at VM level. This primitive, implemented
with the code shown in Figure 7, reads the snapshot file,
puts all objects into the object memory, updates the object
references to make them coherent and finally returns the
special objects array of the loaded image.

On the other side, creating an object space from scratch
can be implemented as a bootstrap of the system, following
the process defined in [PDF+on]. The object space provides
the createObjectWithFormat: method to create an object re-
specting the given format but with an anonymous class, so
we can consider it as a "classless" object. This method is
used in the first stage of the bootstrap process, when no
classes are available in the object space image yet, to cre-
ate the nil instance (cf. Figure 8) and the first classes (cf.
Figure 9). Later, when the classes are available, those ob-

primitiveResumeFromASpecialObjectsArray:
aSpecialObjectsArray

| oldProc activeContext newProc |

"we put to sleep the current running process"
oldProcess := self activeProcess.
statProcessSwitch := statProcessSwitch + 1.
self push: instructionPointer.
self externalWriteBackHeadFramePointers.
activeContext := self

ensureFrameIsMarried: framePointer
SP: stackPointer.

objectMemory
storePointer: SuspendedContextIndex
ofObject: oldProc
withValue: activeContext.

"we replace the special objects array"
self replaceSpecialObjectsArrayWith: aSpecialObjectsArray.

"we awake the process"
newProc := self activeProcess.

self externalSetStackPageAndPointersForSuspendedCon-
textOfProcess: newProc.

instructionPointer := self popStack

replaceSpecialObjectsArrayWith: newSpecialObjectsArray
objectMemory specialObjectsOop: newSpecialObjectsArray.
objectMemory nilObject:

(objectMemory splObj: NilObject).
objectMemory falseObject:

(objectMemory splObj: FalseObject).
objectMemory trueObject:

(objectMemory splObj: TrueObject).

"Reinitialize VM state to point to the correct nil object"
method := objectMemory nilObject.
messageSelector := objectMemory nilObject.
newMethod := objectMemory nilObject.
lkupClass := objectMemory nilObject.

Figure 5. VM functions to transfer control to a virtualized
image

jects are set their corresponding ones by using the setClass:
message.

4.6 Image Contract and Membrane Configuration
Section 3.6 states the need for establishing a contract be-
tween an image and the object space in order to build the ob-
ject space membrane. This contract has, in our understand-
ing, two complementary parts: the services an image pro-
vides, and the format to access them.

((hostSpecialObjectArray ~~ objectMemory nilObject)
and:

[objectMemory specialObjectsOop ~~ hostSpecialObjectArray])
ifTrue: [

self primitiveResumeFromASpecialObjectsArray:
hostSpecialObjectArray.

].

Figure 6. Additions to VM function checkForEventsMay-
ContextSwith: to give back control to the host image.

Image services. In order for the host to manipulate the im-
age inside an object space, the object space must provide
the required services. Those services are exposed as ob-
jects to the host, and their availability is given by how
reachable they are in the object graph. For example, to
get the list of classes inside an object space or to manipu-
late its processes, its system dictionary and its processor
should, respectively, be reachable in the image’s object
graph.
Given a Pharo image, the reachability is constrained by
its special objects array. The special objects array is the
only object directly accessible of an image, since an
image file contains in its header an explicit reference to
it. So far, we understand the objects served by an image
are the ones in the special objects array, which we detail
in appendix A.
The special objects array contains references to many
of the objects the membrane needs: nil, true, false, the
processor, the numeric classes, the System dictionary,
the compact classes, and some but not all literal classes.
However, some elements in the special objects array are
not mandatory in Pharo. For example, the System Dictio-
nary may not available and then, there is no easy way to
find all classes in the system.
The current special objects array in Pharo does not pro-
vide all necessary services. It has to be extended to sup-
port, for example, the recovery of process objects sus-
pended because of an error. These processes currently are
only referenced by graphical debuggers, and thus not eas-
ily reachable from the special objects array.

The image format. Given an object in the guest image, its
enclosing object space requires its internal representation
and format to manipulate it correctly. We mean by in-
ternal representation its size, its amount of variable and
fixed slots, the kind of and size of those slots, and in some
cases their meaning.
First, the semantics associated to the special objects array
and its contents should be provided. That is, what does
each index of the array mean.
Second, the guest image may differ from the host Pharo.
Then, it needs to make a correlation between the literal
classes inside both host and guest to transform instances

primitiveLoadImage

| headerlength bytesRead newImageStart rootOffset old-
BaseAddress dataSize rootOop fileObject |

<export: true>

"get the reference to the file object"
fileObject := self stackValue: 0.

"Where will we put the new objects"
newImageStart := objectMemory startOfFreeSpace.

"read image header"
self readLongFrom: fileObject.
headerlength := self readLongFrom: fileObject.
dataSize := self readLongFrom: fileObject.
oldBaseAddress := self readLongFrom: fileObject.
rootOffset :=

(self readLongFrom: fileObject) - oldBaseAddress.

"seek into the file the start of the objects"
self seek: headerlength onFile: fileObject.

"grow the heap in the ammount of the image size"
objectMemory growObjectMemory: dataSize.

"read the file into the free part of the memory"
bytesRead := self

fromFile: fileObject
Read: dataSize
Into: newImageStart.

"tell the vm the free space is now after the loaded objects"
objectMemory advanceFreeSpace: dataSize.

"update the pointers of the loaded objects"
self

updatePointersForObjectsPreviouslyIn: oldBaseAddress
from: newImageStart
until: newImageStart + dataSize.

"return the special objects array"
rootOop := newImageStart + rootOffset.
self pop: 2 thenPush: rootOop.

Figure 7. Implementation of primitive primitiveLoadImage
that loads an image snapshot into the object memory.

from and to the object space format. The classes sub-
ject to this correlation in our current implementation are
ByteString, ByteSymbol, Array, SmallInteger, Character and
Association. Such correlation is done by providing the
correspondent transformation methods.

theNil := objectSpace createObjectWithFormat: nilFormat.
objectSpace nilObject: theNil.

Figure 8. Creating a "classless" nil when there are no
classes

metaclassMirror := objectSpace
createClassWithFormat: classFormat
forInstancesOfFormat: metaclassFormat.

metaclassClassMirror := objectSpace
createClassWithFormat: metaclassFormat
forInstancesOfFormat: classFormat.

metaclassMirror setClass: metaclassClassMirror.
metaclassClassMirror setClass: metaclassMirror.

Figure 9. Creating "classless" Metaclass and Metaclass
class when there are still no classes

Finally, some mirrors must manipulate the internal state
of special objects, and thus they must know their internal
structure. The membrane configuration must provide the
meaning of the instance variables of such special objects
i.e., the ProcessSchedulerMirror needs the index of the
activeProcess and processList, and the ClassMirror needs
the index of the superclass, method dictionary and name
instance variables.

4.7 Non Implemented Aspects
For the sake of completion, we document in this subsection
the aspects that have not been yet implemented in our solu-
tion.

Our current implementation does not handle properly
the release of resources such as files or network connec-
tions (sockets). In Pharo, the finalization and release of such
resources is made in the language side. Given the single-
threaded nature of our solution, an image running can pro-
voke the garbage collection of any object in the memory
even if they belong to another image, since the object mem-
ory is shared by all images (cf. Section 4.1). However,
garbage collection only activates in the current implementa-
tion the finalization process that belongs to the running im-
age. The finalization processes of other images are ignored.
Then, resources may leak, since they can be garbage col-
lected but not properly finalized and released.

Another yet not implemented aspect regarding resources
are global limitations imposed by the virtual machine. For
example, the virtual machine network plugin accounts and
limits the amount of open sockets. In that sense, an image
can use resources indiscriminately and restricting their use
to other images i.e., if there is a total of 100 sockets and an
image opens 70, the rest of the images in the system have to
share the 30 left.

5. Image Virtualization solving the Reflective
Architecture Problems

Virtualizing an image, and therefore obtaining fine grained
control on it from the language has several applications.
In this section we describe some applications that solve
common problems, although our solution is not constrained
to them.

5.1 Image Surgery and Emergency Kernel Layer
Oz solves typical image surgery scenarios [CPDD09] such
as the self-modification of the kernel and the recovery of bro-
ken images, described in sections 2.1 and 2.3. Using object
spaces turn self-brain surgery into simple brain surgery, by
introducing the role of the surgeon with a host image. Bro-
ken images can be loaded inside an object space to be subject
of surgery in an atomic way. The host contains high-level
tools such as a browser, an object inspector and a debugger
to manipulate the object space and ease the surgery.

By using virtual images we can also provide a rich and
interactive Emergency Kernel: whenever an error occurs in
the running Pharo system because of self-brain surgery, the
system can give the control to a fallback image. This fallback
image is a full image containing the failing image inside
an object space, and tools to act upon it, so it can perform
surgery to solve the problem. The fallback image is to the
system an Emergency Kernel which compared to the orig-
inal emergency evaluator solution, has no dependencies on
the failing image and therefore avoids its self-brain surgery
problems. After the surgery, the main system can get back
the control and continue running.

5.2 Controlled Interruption
Image virtualization can provide a solution for process in-
terruption (cf. Section 2.2). When an object space is inter-
rupted, its host obtains the control letting the interrupted ob-
ject space untouched. This way, the interruption process has
its two problems solved:

Non intrusive interruption. The state of the object space
when the interruption took place remains unchanged. The
problematic process can be found easily since is not
moved to a suspended list, but remain as active process
in the asleep object space.

Non restricted interruption. Since interruption is handled
by the host image, there are no restrictions on which pro-
cesses can be interrupted by the interrupt key combina-
tion.

5.3 Sandboxing
Oz can be used to sandbox applications by limiting the scope
of side effects and the CPU consumption.

For example, running the some test suites of Pharo lets
the system in a dirty state because of side effects. For ex-
ample, the test case MCWorkingCopyTest unloads the Monti-
celloMocks package and reloads it again as Monticellomocks,

without respecting the original casing. object spaces lever-
age this problem by isolating the side effects inside the ob-
ject space. The host stays unaffected and can analyze the
test results when they finish to run. Finally, the object space
under testing can be discarded while the user can continue
working with the host.

6. Discussion and Related Work
In the field of virtualizing reflective object oriented lan-
guages and their runtimes, we did not find so far a work di-
rectly related with our solution. There are, however, works
on isolation related with some parts of it, specially with the
internal low level implementation details.

The memory layout we implemented has, as we stated in
sections 4.1 and 4.7, many advantages regarding the devel-
opment of our solution, but presents also many drawbacks.
Sharing the object memory between different images implies
that there is no need for special support on cross-image ref-
erences, and that the existing memory management in the
virtual machine can be used transparently. However, this so-
lution forbids the host to analyze the object space memory
usage, and has an impact on the GC.

J-Kernel [HCC+98] and Luna [HvE02] present a solution
similar to ours regarding the memory usage. They are Java
solution for isolating object graphs with security purposes.
In them, each object graph is called a protection domain.
All protection domains loaded in a system, and their objects,
share the same memory space.

The J-Kernel enforces the separation between domains
by using the Java type system, the inability of the Java lan-
guage to forge object references, and by providing capability
objects[Lev84, MRC03, Spo00] enabling remote messaging
and controlling the communication. This same separation in
Luna [HvE02] is achieved by the modification of the type
system and the addition in the virtual machine of the remote
reference concept. In our solution, the separation is given by
the same inability to forge object references and the mem-
brane objects that control the communication.

KaffeOS [BHL00] makes an explicit domain separation
in memory by using different memory heaps in the virtual
machine. They enforce domain separation by using memory
write barriers. Cross-domain references become cross-heap
references, and thus, they need special virtual machine sup-
port.

Regarding the threading model (cf. Section 4.4), a Pharo
virtual machine has single threaded execution. Only one op-
erating system thread is used to execute Pharo code, so pro-
cess scheduling is handled internally by the virtual machine.
Processes scheduled using this approach are also called
green threads . Green threads provide process scheduling
without native operative system support while limiting the
proper usage of modern multicore CPUs. In our implemen-
tation, their usage allowed us to reuse the current virtual ma-
chine scheduling. We also use a green thread approach to

schedule image execution. All images are executed in the
same single thread, one at a time. This model simplifies our
implementation because it avoids concurrency problems be-
tween host and guest images.

KaffeOS presents a model where resource accounting is
handled at the level of the virtual machine. Our solution
aims to control and account resources at the language level.
However, our implementation is not complete yet on this
front.

Worlds [WK08] scope side-effects of Javascript programs
by reifying the notion of its state. Our solution takes a similar
approach by reifying images. In our solution, images have
a notion of their own state just like Javascript Worlds, but
include also its manipulation from the outside.

7. Conclusion and Future Work
This paper explores image virtualization for object oriented
reflective systems such as Smalltalk. We present Oz, an ob-
ject space based solution for image virtualization. Oz object
spaces provides services to control and manipulate Smalltalk
images, without enforcing the inclusion of extra libraries
inside them. In particular, Oz object spaces allow image
surgery and the manipulation of an image’s execution from
the language.

Oz object spaces encapsulate and enclose their inner im-
age by creating a membrane of objects responsible for its
communication and control. The membrane is composed by
a façade object which reifies the object space, and mirrors
that control the communication between the host and single
objects inside the object space. This façade and mirrors hide
the internal details of the object space, such as its internal
representation, memory layout or threading model. This en-
capsulation property may allow to implement a remote Oz
object space, polymorphic with the current one. For future
research we would like to explore the object space API for
controlling remote images and how it relates to distributed
images.

Oz presents a green thread scheme of execution. It vir-
tualizes processes and avoids concurrency problems by en-
forcing mutual-exclusion of the execution of different im-
ages. As future work, we want to explore the introduction of
operating system threads to take advantage on the latest mul-
ticore CPUs, take control of them through the objectspace
and account their consumed resources through the language.

For future work, we would like to explore Oz as an infras-
tructure for developing customized Smalltalk kernels and
software analysis.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the Contrat de Projets Etat Region (CPER)
2007-2013.

References
[BGW93] Daniel G. Bobrow, Richard P. Gabriel, and J.L.

White. CLOS in context — the shape of the design.
In A. Paepcke, editor, Object-Oriented Program-
ming: the CLOS perspective, pages 29–61. MIT
Press, 1993.

[BHL00] G. Back, W. Hsieh, and J. Lepreau. Processes in
kaffeos: Isolation, resource management and shar-
ing in java. In 4th USENIX International Sympo-
sium on Operating System Design and Implemen-
tation (OSDI), 2000.

[BU04] Gilad Bracha and David Ungar. Mirrors: de-
sign principles for meta-level facilities of object-
oriented programming languages. In Proceedings
of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press.

[CPDD09] Gwenaël Casaccio, Damien Pollet, Marcus Denker,
and Stéphane Ducasse. Object spaces for safe im-
age surgery. In Proceedings of ESUG International
Workshop on Smalltalk Technologies (IWST’09),
pages 77–81, New York, USA, 2009. ACM digital
library.

[DLR07] Stéphane Ducasse, Adrian Lienhard, and Lukas
Renggli. Seaside: A flexible environment for build-
ing dynamic web applications. IEEE Software,
24(5):56–63, 2007.

[DSD08] Marcus Denker, Mathieu Suen, and Stéphane
Ducasse. The meta in meta-object architectures. In
Proceedings of TOOLS EUROPE 2008, volume 11
of LNBIP, pages 218–237. Springer-Verlag, 2008.

[Duc99] Stéphane Ducasse. Evaluating message passing
control techniques in Smalltalk. Journal of Object-
Oriented Programming (JOOP), 12(6):39–44, June
1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GKVDHF01] Paul Graunke, Shriram Krishnamurthi, Steve Van
Der Hoeven, and Matthias Felleisen. Programming
the web with high-level programming languages.
In Proceedings of ESOP 2001, volume 2028 of
Lecture Notes in Computer Science, pages 122–
136, 2001.

[GR89] Adele Goldberg and Dave Robson. Smalltalk-80:
The Language. Addison Wesley, 1989.

[HCC+98] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Cza-
jkowski, Deyu Hu, and Thorsten von Eicken. Im-
plementing multiple protection domains in java. In
ATEC ’98: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages
22–22, Berkeley, CA, USA, 1998. USENIX Asso-
ciation.

[HvE02] C. Hawblitzel and T. von Eicken. Luna: a flexible
java protection system. ACM SIGOPS Operating
Systems Review, 36(SI):391–403, 2002.

[Lev84] Henry M. Levy. Capability-Based Computer Sys-
tems. Butterworth-Heinemann, Newton, MA, USA,
1984.

[Mae87] Pattie Maes. Concepts and experiments in compu-
tational reflection. In Proceedings OOPSLA ’87,
ACM SIGPLAN Notices, volume 22, pages 147–
155, December 1987.

[MRC03] Todd Millstein, Mark Reay, and Craig Cham-
bers. Relaxed multijava: balancing extensibility
and modular typechecking. In Proceedings of
the 18th ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and ap-
plications, pages 224–240. ACM Press, 2003.

[PDF+on] Guillermo Polito, Stéphane Ducasse, Luc Fab-
resse, Noury Bouraqadi, and Benjamin Van Ry-
seghem. Bootstrapping reflective systems: The case
of pharo. Journal on Science of Computer Pro-
gramming - Special Issue: Smalltalk Based Sys-
tems, 2012, under submission.

[Rho08] Christophe Rhodes. Sbcl: A sanely-bootstrappable
common lisp. In International Workshop on Self
Sustainable Systems (S3), pages 74–86, 2008.

[Riv96] Fred Rivard. Pour un lien d’instanciation dy-
namique dans les langages à classes. In JFLA96.
INRIA — collection didactique, January 1996.

[Spo00] Lex Spoon. Objects as capabilities in squeak, 2000.

[WK08] Alessandro Warth and Alan Kay. Worlds: Control-
ling the scope of side effects. Technical Report RN-
2008-001, Viewpoints Research, 2008.

A. Appendix: The Special Objects Array
In this appendix the present an overview of the special objects array used by the Pharo platform. We present for each of its
indices: (a) the object to be found, (b) if that object is mandatory for the virtual machine and (c) relevant comments. If the
object is not mandatory for the virtual machine, a nil reference will took the place most certainly.

We emphasize in bold the objects required so far in Oz in order to be able to introspect an image. The availability of literal
classes can be replaced by the availability of the system dictionary and the required class names in the membrane configuration.

Array Index Required in
Pharo Stack
VM core

Object Details

1 x nil
2 x false
3 x true
4 x Scheduler association
5 Bitmap class Required only for graphics.
6 x SmallInteger class
7 x ByteString class
8 x Array class
9 System dictionary Elemental: without it, Oz cannot reach all

classes in the image.
10 x Float class
11 x MethodContext class
12 BlockContext class This class does not exist any more in

Pharo.
13 x Point class
14 LargePositiveInteger class
15 Display class Required only for graphics.
16 x Message class
17 CompiledMethod class Not used by the Virtual Machine
18 Low space semaphore Used to signal low space
19 x Semaphore class.
20 x Character class
21 x doesNotUnderstand: selector
22 x cannotReturn: selector
23 Low space process The Virtual Machine uses this internally.

Not used by the language.
24 x Special selectors array An array of the 32 selectors compiled as

special bytecodes.
25 x Character table An array of the 255 Characters in ascii

order.
26 x mustBeBoolean selector
27 ByteArray class
28 Process class Not used by the Virtual Machine.
29 x Compact classes array An array of up to 31 classes whose in-

stances have compact headers.
30 Delay semaphore Used if scheduling timers only.
31 Interrupt semaphore Used for VM side interruption.
32 Float prototype Not used by the Virtual Machine.
33 LargePositiveInteger prototype Not used by the Virtual Machine.
34 Point prototype Not used by the Virtual Machine.

Array Index Required in
Pharo Stack
VM core

Object Details

35 x cannotInterpret: selector Used in case method dictionary in a class
is nil.

36 MethodContext prototype Not used by the Virtual Machine.
37 x BlockClosure class
38 BlockContext prototype Not used by the Virtual Machine .
39 x External objects array Array of objects referred by external code.
40 Mutex Not used by the Virtual Machine.
41 LinkedList for overlapped calls in CogMT Used by another Virtual Machine imple-

mentation.
42 Finalization Semaphore
43 LargeNegativeInteger class
44 ExternalAddress class Used for FFI calls.
45 ExternalStructure class Used for FFI calls.
46 ExternalData class Used for FFI calls.
47 ExternalFunction class Used for FFI calls.
48 ExternalLibrary class Used for FFI calls.
49 x aboutToReturn:through: selector Used to notify of unwind contexts.
50 x run:with:in: selector For objects as methods usage.
51 Immutability message Not used in Pharo.
52 FFI errors array Not used by the Virtual Machine.
53 Alien class Used for FFI callbacks.
54 invokeCallback:stack:registers:jmpbuf: selec-

tor
Used for FFI callbacks.

55 UnsafeAlien class Used for FFI callbacks.
56 WeakFinalizer class. Used in Weak finalization.

	Introduction
	Reflective Architectures: Recurring Problems and State of the Art Solutions
	Case 1: System self-brain surgery
	Case 2: Uncontrolled Computations
	Case 3: Error handling during system initialization

	The Oz model for Virtual Images
	The Guest Image
	The Membrane
	Mirrors for Object Manipulation
	Controlled Execution
	Controlled Communication
	A Guest Image Contract

	Oz implementation in the Pharo Platform
	Memory Layout
	Mirror Implementation
	Process Manipulation and Scheduling
	Context Switch between Images
	Creating an object space
	Image Contract and Membrane Configuration
	Non Implemented Aspects

	Image Virtualization solving the Reflective Architecture Problems
	Image Surgery and Emergency Kernel Layer
	Controlled Interruption
	Sandboxing

	Discussion and Related Work
	Conclusion and Future Work
	Appendix: The Special Objects Array

