
Speeding Up Robot Control Software Through Seamless Integration
With FPGA

LE Xuan Sang1,2, Luc Fabresse1, Jannik Laval3, Jean-Christophe Le Lann2, Loic Lagadec2 and Noury
Bouraqadi 1

1Institut Mines-Telecom, Mine Douai
2ENSTA Bretagne

3DISP Laboratory, University Lumière Lyon 2

Context

Today robotic computing systems are usually implemented us-
ing general purpose processors because of their accessibility
and simplicity which do not require specific knowledge. How-
ever, this approach restricts several optimization opportunities
and may not always satisfy performance, cost, and energy re-
quirements [5]. FPGA infrastructures can be considered as a
good solution for these issues, especially in complex robotic
systems that require time consuming tasks. Advantages are
many to use FPGAs along with general purpose processors.
On the one hand, FPGAs provide hardware acceleration and on
the other hand, CPUs allow developers to use flexible software
development environments. However, programming hardware
devices requires a specific knowledge which remains a chal-
lenge for developers and usually results in a loss of produc-
tivity [3]. Moreover, interfacing FPGAs and high-level soft-
ware remains problematic. This problem varies depending on
projects due to the change of requirements and takes an im-
portant amount of development time. These difficulties are a
barrier for a widespread adoption of FPGA in systems such as
robotics ones.

In this work, we present a generic architecture along with a
toolset and libraries to ease the integration of FPGAs into ex-
isting robotic system. We provide a mean to connect the FPGA
to the system and automatically deploy VHDL code that can
be either legacy VHDL code, or generated VHDL code from
a HLS tool. Developers do not have to worry about the in-
terface between the FPGA and the processor. This interface
is automatically generated according to the VHDL code. On
the high-level software side, our software platform allows di-
rect access to circuit registers on FPGA as memory addresses
(memory mapping). To demonstrate this proposal, we de-
scribes a complete follower robot as a case study. The im-
age processing to achieve a colour-based object detection is
deployed on a FPGA. The rest of the robot controller runs on
a CPU and has been developed using an object-oriented pro-
gramming language (Pharo Smalltalk).

Our approach

We consider the following scenario: Developers have a robotic
system that embeds a FPGA and they have some VHDL legacy
code that performs some time-consuming tasks. The aim is to
provide an easy way to (1) deploy this code to the FPGA, and
(2) to directly access the result on the FPGA from a high-level
robotic software framework (such as the Robotic Operating
System, ROS) without worrying about the communication be-
tween the FPGA and the software.

The proposed work abstracted the communication between
the low-level hardware and high level software using an auto-
generation code approach. The goal is to reduce the develop-
ment time by limiting as much as possible the work on hard-
ware (FPGA) and focusing more on the functionalities of the
application.

Figure 1 shows the general architecture of our approach.
The VHDL legacy code is first imported to the system with
the help of a dedicated VHDL Parser. The parser processes
any valid VHDL code and automatically generates a corre-
sponding circuit model of that design. This circuit model is
described using the meta-model presented in [8]. This meta-
model captures the subset of synthesizable VHDL structures
[6]. From this meta-model, developers can express descrip-
tions i.e. models of digital circuits as plain objects that can
automatically be processed and exported to VHDL code if
needed.

The meta-model allows to compose arbitrary circuit models
(imported from VHDL) via predefined interfacing specifica-
tions. Concretely, a generic interfacing specification (Wish-
bone) is built using the meta-model, this specification takes
the user circuit model as input and generates a correspond-
ing interface model based on its structure. The circuit model
is then integrated with the generated interface model to form
the final model. This latter can be automatically exported to
VHDL and deployed on FPGA. Meanwhile, on the software
side, the meta-model generates also the wrapper classes based
on user input design. These classes grant user software access
to circuit registers (on FPGA) as normal objects.

1

Meta-
model

VHDL
legacy

User logics

VHDL
Parser

Wishbone
master

IRQ
manager

Wishbone
wrapper

Physical
interface

shared bus

Wishbone
slave

Wishbone
slave

User Logic 1

User Logic n

irq

<<generate>>

Drivers/
memory map

device file…
.

FPGA Processor

Smalltalk
VM

Robotic
API

Wrapper
classes

User
app.

<<generate>>

Non-reusable Partially reusable completely reusable automatically generated

Figure 1: Auto-generation code is the heart of our work with the help of the meta-model [8]. The hardware interface is generated
based on input VHDL; software applications can directly access to circuit registers via generated wrapper classes.

The solution is highly reusable and generic since the inter-
facing specification is made at the meta-model level. The only
modification needed is when the physical interface between
the FPGA and the processor changes. In this case, both hard-
ware wrapper and the low-level driver needs to be modified
correspondingly. These changes are made once, and then can
be reused for different projects using the same physical inter-
face.

Hardware interface

The software framework provides access to the FPGA circuit
registers as a virtual memory region using a memory mapping
technique. Each FPGA appears as a device file on the proces-
sor. The software framework maps this file to a segment of
virtual memory. This permits the user applications to treat the
FPGA as if it is part of the primary memory. An addressing
mechanism is therefore needed on FPGA to map each circuit
register to the corresponding address [9].

Accessing circuit registers by address requires an address/-
data IO interface between the FPGA and the software frame-
work. On the processor, this relies on the dedicated driver. On
the FPGA, we use the Wishbone bus to provide such mecha-
nism. Each user logic is mapped to a wishbone slave. These
slaves are controlled by a wishbone master that takes an ad-
dress from software and decides which slave to be activated.
This master is connected to a wrapper close to the physical in-
terface which is used to adapt the physical interface to Wish-
bone interface.

An IRQ (interrupt) manager is added to the interface to al-
low software to react to the changes raised on hardware side.

This Wishbone interface is a part of the meta-model’s inter-
face specification. It will be generated automatically based on
the input target circuit.

Software framework

The software framework views each circuit register as a mem-
ory segment which value can be accessed by an address. As
shown in the figure 1, this is achieved using the low lever hard-
ware driver. This latter is the user space I/O (UIO) driver ded-
icated to the physical interface. On the first hand, it handles
the communication between FPGA and the processor. On the
other hand, it provides a generic device special file to the high-
level software that can be mapped as a virtual memory region.
This driver is hardware specific and must be updated accord-
ingly when we adopt a new physical interface.

Thanks to the low level driver, the higher software layer,
now considers the FPGA as a virtual memory region. Every
FPGA register can therefore be read/written via its correspond-
ing virtual address. The generated wrapper classes ease this
access by: (1) automatically addressing the FPGA registers
and (2) providing an abstract way to read/write these registers.

Multiple circuits can run in parallel on FPGA and each is
assigned to an independent virtual memory segment. Our soft-
ware framework supports multi-process at language level, it’s
easy to map each circuit on FPGA to a equivalent process.

Apart from the memory mapping, the framework also offers
different features: (1) a integrated ROS client that allows soft-
ware to easily communicate with a ROS network; (2) a mini
integrated web-server that allows users to instantly develop,
inspect or even execute their applications from browser. This
latter is especially helpful since, for most robotic system, the
software framework is often run in headless. Writing a dy-
namic code and execute it from distance is a good solution for
rapid robotic prototyping and experiment.

2

Controllability and debugging

Our platform offers software-like debug capabilities on hard-
ware using the concept of dynamic hardware breakpoint pre-
sented in [8] into the framework. The idea is that, when the
meta-model generates the slave for a target circuit, if needed,
a debug specific sub-circuit will be injected automatically into
that slave. This sub-circuit allows the software to control the
execution flow of the target circuit by setting a dynamic break-
point.

The execution of the circuit will be stopped when the break-
point condition becomes true. In this state, software can in-
spect the registers value as well as the execution time (in clock
cycles).

Software can resume the halted execution at anytime by
writing a true boolean to the resume register on the debug sub-
circuit.

Verification & demonstration

The VHDL parser has been verified using some standard
benchmarks: ANTRL [7], IWLS 2015 [2] and ITC’99 [4]. The
verification of the meta-model is much more challenge since,
at the moment, only 60% of VHDL structures is implemented.
However, in the purpose of automated configuration and inte-
gration, it is not necessary that all the VHDL code should be
imported and modelled. The interface specification needs only
the external interface (entity) of the topmost design entry. Our
interface specification is similar to IP-XACT [1], a well-know
standard for this kind of problem.

To demonstrate our platform in action, we have built a robot
follower application that use a camera and FPGA for object
detection. The FPGA takes the image from the camera and
filters each pixel (using a hardware HSV filter) by a specific
colour pattern. The filtered pixels are then used to calculate
the barycenter of the detected region which finally provides
the position of object. The VHDL design (reused from another
project) has been imported to out framework for interface gen-
eration and registers addressing. The wrapper software classes
for FPGA accessing has been are also generated. These tasks
are completely automatic. The only task that we have needed
to manually do is to create a simple configuration class for IOs
specification of the target circuit.

Via the wrapper classes, software can easily collect the ob-
ject position from the FPGA and stream it to the ROS network.
The controller software (compliant to ROS) uses this informa-
tion to follow the object.

From the developers perspective, generated wrappers
classes are all they need to access to FPGA (as an oriented-
object manner). The system abstracts all the communication
and hardware accessing that are performed transparently.

References
[1] Ieee standard for ip-xact, standard structure for packaging,

integrating, and reusing ip within tool flows. IEEE Std
1685-2014 (Revision of IEEE Std 1685-2009), pages 1–
510, Sept 2014.

[2] C. Albrecht. Iwls 2005 benchmarks. Technical report,
June 2005.

[3] D. F. Bacon, R. Rabbah, and S. Shukla. Fpga program-
ming for the masses. Commun. ACM, 56(4):56–63, Apr.
2013.

[4] F. Corno, M. Reorda, and G. Squillero. Rt-level itc’99
benchmarks and first atpg results. Design Test of Comput-
ers, IEEE, 17(3):44–53, Jul 2000.

[5] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang. Com-
puting Performance Benchmarks among CPU , GPU , and
FPGA.

[6] IEEE. IEEE Standard for VHDL Register Transfer Level
(RTL) Synthesis. Technical Report October, 2004.

[7] T. Parr. ANTLR v4.0.

[8] L. X. Sang, L. Lagadec, L. Fabresse, J. Laval, and
N. Bouraqadi. A meta model supporting both hardware
and smalltalk-based execution of fpga circuits. IWST’15,
2015.

[9] B. Wile. Coherent Accelerator Processor Interface (CAPI
) for POWER8 Systems White Paper. Technical Report
September, IBM Systems and Technology Group, 2014.

3

