
Towards Test-Driven Development for Mobile Robots

Luc Fabresse1, Jannik Laval1 and Noury Bouraqadi1

I. TEST-DRIVEN DEVELOPMENT

Test-Driven Development methodology (TDD)
is an agile process to build software incrementally
[?]. The main principle is that the development is
driven by tests. Developers use tests as a guide
to produce software and ensure its conformity
to requirements. This process allows developers
to iterate on short development cycles and test
functionalities as soon as possible in the devel-
opment process. Each iteration begins by coding
tests that reflect a particular requirement. The goal
is to translate requirements into code that tests
the software. Then, developers write or adapt the
software to conform the tests. Each time a new
functionality is integrated, all the tests are re-
executed, which assure regression testing.

II. WHY TDD FOR ROBOTICS?

Developing robots combines the challenge of
building hardware and the corresponding soft-
ware. Even in the case of an existing robotic
hardware, the development of control software
alone is more challenging than plain software
development. Indeed, it introduces the hardware
integration constraint and the physical problems.
Using TDD makes developers to express the robot
specification in tests. Then, these covering tests
can help at different stages. For example, tests
produced during prototyping stage can be reused
by the quality assurance (QA) team to verify that
a newly produced robot conforms to the speci-
fication of its product line. Another example of
usage of these tests is the maintenance of a robot.
Failing tests can help to quickly and accurately
identify defects of a robot. Passing the same tests
validates that repair actually solves all problems.

1 Mines-Telecom Institute, Mines Douai, France, e-mail:
firstName.lastName@mines-douai.fr Web:
http://car.mines-douai.fr

III. REQUIREMENTS FOR ROBOT TEST

In the context of robotics, we have identified
four requirements for TDD:

• Repeatability: A mobile autonomous robot
operates in a dynamic environment. This
implies that the source of an error is difficult
to identify. For example, an error of a sensor
can be hidden by an external event. The
repeatability of the tests is necessary to be
able to validate the behavior of a tested robot,
by ensuring that test conditions are always
the same.

• Reuse: Tests related to high-level behavior
have to be reusable for robots built out of
different components but which are supposed
to exhibit the same behavior.

• Safety: Since tests are run on robots poten-
tially with defects, it is important to ensure
that they will not hurt someone, damage
themselves, or break something in the en-
vironment. This means that tests should be
executed in a precise order to first ensure
the validity of basic functionalities (sensing
activities) before high-level ones (acting ac-
tivities) that are likely more dangerous.

• Automation: Tests should be run with as
few human action as possible. Typically, at
the end of a product line where all built
robots should undergo QA tests, automation
is necessary to speed up the test process.

IV. TOOLS FOR ROBOTICS TDD

Software TDD relies on a set of tools to help
developers. We believe that Robotics TDD re-
quires similar tools. This is why we are currently
developing BoTest, a tool to support expressing
and running robotics tests.

It is implemented in the Pharo programming
language [?], on top of the SUnit unit-test frame-
work. So far, it provides support for expressing
dependencies between tests. This is useful from

http://car.mines-douai.fr

Figure 1: Testing Robot's Laser
Rangefinder Inside a Box

the safety point of view as well as for quickly
identifying the lowest-level failing test. It also
guides testers for setting up the initial physical
conditions of a test (e.g. robot pose, obstacles,
light). Besides, it enables expressing verifications
that involve testers such as measuring the distance
travelled by a robot.

As part of our CAIRE project, we are using
BoTest to develop the software that controls two
identical robots we bought. We started by writing
tests based on specifications provided by the man-
ufacturer and going up towards our application
level. We provide here an example related to the
laser rangefinder. We put a robot inside a 1 meter
wide cube box (see Figure 1) and check that
measured distances are within the expected range.
The code below corresponds to the test where the
robot is located in the bottom left corner of the
box.

1 testLaserWhenRobotAtBottomLeftOfTheBox
2 | laser notification |
3 self requestAction: ’Please, put the robot at

the bottom left of the 1x1 box’.
4 laser := robot laserService.
5 laser enableNotificationsEvery: 10.
6 notification := self notificationOrNilFrom: laser.
7 allDistances := notification distances.
8 self assert: allDistances areLessThan: 0.75

andGreaterThan: 0.25

Test starts by requesting the operator to put
the robot at the right position (line 3). Then, we
trigger the laser service of the robot to publish no-
tifications every 10 clock cycles (lines 4-5). Each
notification gathers all measurements performed
in a single laser scan. Last, we check that all
measured distances are less than 0.75 meter and
greater than 0.25 meter (line 8). Running this test
allowed us to identify that the laser was partially
covered with the robot structure. Indeed, some
measured values were smaller than the minimum
expected distance.

V. SUMMARY AND FUTURE WORK

We argue that robotics software development
would really benefit from Test-Driven Develop-
ment. We believe that better tool support would
help to widespread TDD for robotics. We intro-
duced BoTest, our first step towards this end. It
helps developers to write repeatable and reusable
tests. It also helps to execute tests in a safe order
based on requirements expressed by developers.

This work is part of a wider ongoing effort
around the CAIRE project which one of the goals
is to apply agile principles [?] to the development
of robotics software. This requires to adapt these
software technics to the robotics specificities and
constraints. An example of such constraints is
the physical dimension of robots, which requires
human actions to perform tests. We would like to
go further in automating such tests and reducing
human involvement.

ACKNOWLEDGEMENTS

This work is supported by Nord-Pas de Calais
Regional Council through the CAIRE project
(2012-2014).

REFERENCES

[1] K. Beck. Extreme Programming Explained. Addison-
Wesley, 2001.

[2] J. Highsmith and M. Fowler. The agile manifesto. Soft-
ware Development Magazine, 9(8):29–30, 2001.

[3] O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by
Example. Square Bracket Associates, July 2010.

